Trimech-Main-Site-Group-Navigation Trimech-Main-Site-Group-Navigation Trimech-Main-Site-Group-Navigation Solid-Solutions-Group-Navigation Javelin-Group-Navigation Solid-Print-Group-Navigation 3DPRINTUK-Group-Navigation Trimech-Enterprise-Solutions-Group-Navigation Trimech-Enterprise-Solutions-Group-Navigation Trimech-Advanced-Manufacturing-Group-Navigation Trimech-Staffing-Solutions-Group-Navigation
With over 35 years of experience, the TriMech Group offers a comprehensive range of design, engineering, staffing and manufacturing solutions backed by experience and expertise that is unrivalled in the industry. The TriMech Group's solutions are delivered by the divisions and brands shown here, use the links above to visit the group's websites and learn more.
x
Search

Power Surfacing for Automotive Applications - Four Part Series

Wednesday July 12, 2017 at 9:54am
Technical Manager Andy Fulcher demonstrates how Power Surfacing can be used to build automotive surfaces. Additionally, Andy has demonstrated this within a four part series of webcasts entitled 'Power Surfacing for Automotive Applications'.


Lets face it - we all want to be car designers From our earliest days, many of us have drawn all manner of cars and imagined all sorts of fantastical vehicles – mainly ugly ones in my case!

Designing car bodies in practice is an expensive and time-consuming process involving designers (we used to call them “stylists”), clay modellers, feasibility engineers, ‘Body-in-White’ (BIW) engineers and manufacturing engineers. The objective is to create an attractive shape that fulfils the aesthetic and functional requirements of the car company – but creating that shape is not easy. Subtleties of how light interacts with the shape are crucial and so significant expertise and much time and money are invested in the process.

Since the early 90’s we have had CAD systems to help us and now the ‘master’ shapes are no longer locked into the physical tooling models (‘master models’) but are stored in CAD systems in the form of numerical surfaces. From this data, the engineering of dependent parts (body, chassis and trim) can be progressed. Ultimately, all forms of tooling (press tools, injection moulding tools, RIM tools etc.) can be manufactured from the CAD data. Capturing the crucial surface shape has evolved from spline based systems requiring a lot of care and time to more powerful systems available today.

Traditional methods ‘engineer’ the surfaces by laying out curves and then sweeping and lofting. Blends and fills can then be added. SOLIDWORKS can do this pretty well, but it can be time consuming and results in very long feature trees.

But there is an alternative – using the SOLIDWORKS Power Surfacing partner product. This is a tool that allows creation and manipulation of surfaces with 'push and pull' techniques. It is intuitive, easy to use and very fast – much faster for free-form work than with the conventional ‘multiple sketch and feature’ approach.

The underlying technology is called 'SubD'modelling meaning 'Sub Division Modelling'. The method is based on a mathematical approach where a polygon is sub divided recursively to progressively form a smooth surface. The more sub divisions that are made, the smoother the surface. Typically, 3 – 6 sub divisions are sufficient to obtain very smooth shapes. There are several methods of doing this, but the ‘Catmull-Clark’ method is commonly used.

What's the benefit of this? The answer is that the method creates surfaces that are automatically matched across all boundaries in tangency (‘C1’ continuity) AND curvature (‘C2’ continuity). Car bodies require C2 continuity (except for deliberate creases and styling lines) so tools that inherently create C2 continuous surfaces are hugely beneficial.

To demonstrate how Power Surfacing can be used to build automotive surfaces, I have recorded a Webcast series entitled 'Power surfacing for Automotive Applications' covering...

1.       Introduction including an illustration of how to design a bonnet shape.

2.       Free Form Design – showing how to create a complete exterior car body surface in 30minutes!

3.       Working from Renders and Images– showing how I built an E-Type Jaguar.

4.       Using Scan Data – showing how you can create a sports car body from scan or digitised data.

Below is an animation of an E Type Jaguar that I built from images in a couple of hours.



By Andy Fulcher
Technical Manager
Solid Solutions Management Ltd

Related Blog Posts

SOLIDWORKS What's New 2025 - Top 10 Features
SOLIDWORKS 2025 is nearly here, and with it comes a huge number of improvements that have been chosen directly from user feedback. Keep reading to discover our favourite features and learn how SOLIDWORKS 2025 will help accelerate your design process.
How Much Weight Does it Take to Break a Barbell? T
Discover how to predict potential failure points and optimise product designs to enhance durability and provide peace of mind to the consumer with this SOLIDWORKS Simulation tutorial.
Going for Gold! Achieving Precision Machining Exce
Contents Setting Up the GROB G350 Machine Tool Implementing Lang Technik Clamping Solutions Selecting and Setting Up Emuge Franken Tooling Integrating SolidCAM Software Executing the Machining Process The Power of IntegrationYour web browser does....

 Solid Solutions | Trimech Group

MENU
Top