Design study of a quadcopter frame using SOLIDWORKS Simulation

Thursday November 26, 2015 at 4:09pm
In this Blog post SOLIDWORKS Simulation has been coupled with the ‘Design Study’ tool to run a batch of static studies and optimise a quadcopter frame.
SOLIDWORKS Simulation Quadcopter Design Study

Quadcopters are small unmanned aerial vehicles that use four vertical rotors for both lifting and manoeuvring. Their simple design (no rotor articulation) made them very attractive for model-making enthusiasts. However, they can carry only a small electrical battery, which makes their flight time highly limited (typically 10-20 minutes). Therefore, to increase endurance it is preferable to have the frame structure as light as possible.

In this case study SOLIDWORKS Simulation was coupled with ‘Design Study’ tool to run a batch of static studies and optimise a quadcopter frame.

The frame created for this study included all of the essential features: four rotor mounts and beams, and a payload bay in the centre. 

SOLIDWORKS Simulation Design Study

SOLIDWORKS Simulation Design Study

The structure was modelled in a way that would allow to quickly alter the beam thickness using a global variable. 

SOLIDWORKS Simulation Design Study

SOLIDWORKS Simulation Design Study

A static study was set up to simulate the worst case scenario of quadcopter climbing vertically up with its highest achievable vertical acceleration. Assuming the craft would be able to achieve its maximum rate of climb of 8m/s in 1 second – this was evaluated to be 8m/s2.

The quad copter mass was assumed to be 1.75 kg. ABS PC material was applied to the model using SOLIDWORKS material database.

An FEA configuration was made to use only a quarter of the model to speed up time to solve. This was done using ‘Cut with Surface’ feature.

SOLIDWORKS Simulation Design Study

Symmetry fixture was applied to sectioned faces and top face of payload bay was set to fixed geometry.

SOLIDWORKS Simulation Design Study

The rotor mount inner face was loaded vertically up as follows:

¼ of quadcopter mass X (Acceleration due to gravity + Aircraft acceleration) = 1.75 x 0.25 x (9.81 + 8) = 7.8 N 

SOLIDWORKS Simulation Design Study

Design Study (Evaluate>Design Study) was set up to simulate beam thicknesses between 1.00 mm and 2.00 mm with 0.05 mm step. The minimum factor of safety was set to 2 and the goal of the study was to minimize mass.

SOLIDWORKS Simulation Design Study


 After going through 21 scenario the optimal rib thickness was found to be 1.8 mm resulting in 41.74 g for the quarter model, or 167 grams for the whole frame.

SOLIDWORKS Simulation Design Study

Results were also saved out in a .csv file to create a plot which illustrates how F.O.S rises with increasing the beam thickness.

SOLIDWORKS Simulation Design Study


With ‘Design Study’ one can setup a batch of simulation jobs to help on choosing the optimal structure that will satisfy the strength requirements

Rodion Radchenko

Applications Engineer

 SOLIDWORKS Application Engineer

Related Blog Posts

Show SOLIDWORKS Descriptions in Windows Folders
When working with SOLIDWORKS it's vital to give every part a unique name and because of this it's common to use part numbers as the file name. However, part numbers by themselves aren't very descriptive and sometimes this can mean parts take longer t...
Where to find your SOLIDWORKS serial number on you
Ever wondered where you can find your SOLIDWORKS serial number or wondered what version of SOLIDWORKS you're currently working on? This is a common question we receive and can be easy to find if you know where to look. In this blog post we show you h...
Tips & Tricks for Structure Systems
The Structure Systems feature has been available since 2019 for all packages of SOLIDWORKS, but what have we learnt about it since then? I want to focus on the nuts and bolts so that you can dive right in and start using it for yourself. If you haven...

 Part of Solid Solutions Group