Virtually Testing a Scrum Machine with SOLIDWORKS Simulation

Tuesday July 20, 2021 at 11:00am
Following on from our first blog where we discuss how we modelled a scrum machine, as part of our rugby inspired competition with seller MECAD in this blog we'll take a look at analysing our scrum machine with SOLIDWORKS Simulation.
Virtually Testing a Scrum Machine with SOLIDWORKS

SIMULATION METHOD AND TIPS


After creating the mode (see more in our first blog ) we wanted to run an initial static simulation to ensure the frame will withstand the forces applied by the players and find out how the design performs with and without the cross brace.

Automatically Convert Toolbox Parts to Connectors

The first great feature we can utilize to save some time is the option to convert toolbox parts to bolt connectors this allows us to enter torque values, strength data and our required factor of safety. We can also test a range of materials or different types of connector if required. Another benefit of these connectors is the run time will be reduced and we don’t need to set up any extra contact sets.

Replace Custom Connectors

We will also replace these custom pins with a pin connector from the simulation library. This is again to aid run times but also so we can review the forces passing through any one of these pins to ensure they are safe.

Utilize Shell Elements

Because there are some large flat plates on this model, we want to ensure shell elements are used for these, using this type of element will help out study to run as smoothly as posible. These can be manually defined or if the model uses sheet metal SOLIDWORKS will convert to this element type automatically. This will massively reduce the computation time by reducing the number of elements in the study and it should aid convergence. Another benefit of shells is it allow us to quickly change the thickness of the plates directly from the simulation should we need to optimise this.

Remove Non-Structural Components

Next step is to remove anything non-structural from the model so in this case the pads will be removed. This is partly due to the nonlinear nature of the foam that will be in the pad. But also, because we wouldn’t expect them to make much difference to the end result and having them in the study would require significant amount of mesh elements.

Fixing the Model

Next we can add a virtual wall to represent the unit sitting on the floor.

Now the local interactions have been set up the next step is too fix the model in place. In this case we decided because the model is symmetrical and we are assuming symmetrical forces to be applied we can use the SOLIDWORKS symmetry fixtures. This helps to stabilise the model and majorly increases run time by cutting the mesh in half!

How Much Force does a Scrum Put Out?

The next step before running the study is to set up the loading so first gravity can be quickly applied. And from a quick google search we can find roughly what the maximum force a rugby pack can put into a scrum:

We can apply this load to be distributed across each pad. We can then mesh and run the model. When viewing the result we can then display the full model as well. To start let's review the results with no cross brace, the visuals here are exaggerated so that we can see how the model behaves, the actual displacement is very small.

Initial Results

Stress - No Cross Brace

Displacement - No Cross Brace

Factor of Safety - No Cross Brace


From these plots we can see the model is below yield which is great and deflection is around 8mm which isn’t too bad at all! However, our factor of safety is a little lower than we would like so let’s see if we can stiffen the design and improve this. Just in case Manu Tuilagi shows up for training!

Improving our Results

So in this next study we have added some support braces. We have added these in a new configuration so we can quickly copy the previous study, switch the configuration, add the connections and rerun the study

Stress - With Cross Brace

Displacement - With Cross Brace

Factor of Safety - With Cross Brace


From these results we can see the maximum displacement is reduced from 8mm to 2.4mm! I expect this is largely due to some of the stress being relocated away from the corner sections. However, this does increase stress in other areas so it could also be worth adding additional reinforcements there if we wanted to take this a step further. However this design is now satisfactory as it achieves our desired factor of safety with a minimum of 2.17, This means that even if the forwards output double the amount of force we expect the design would be strong enough to not yield.



MORE RUGBY LIONS


Want to take a look at how we created the scrum machine, check out our first blog here. Alternatively to take a look at MECAD's design head over to their blog here.

Next week's competition is going to focus around the design of a rugby kicking tee, so check back for some more modelling tips and a look into SOLIDWORKS Plastics Simulations. Keep your fingers crossed for the Lions this weekend!

Related Blog Posts

Rugby Lions Challenge - Scrum Machine
As the Rugby Lions South Africa tour continues we are launching into a series of CAD competitions between Solid Solutions and MECAD - South African SOLIDWORKS Reseller, battling it out in SOLIDWORKS, as our countries' teams are battling it out on the...
Why Are Businesses Investing In Simulation Tools A
In our first webinar series since Design Rule Ltd. became part of the Solid Solutions Group, we welcome both Design Rule and Solid Solutions customers to this series of webinars focusing on the latest Simulation technology available. Every Wednesday ...
Celebrating Women in Engineering with Techwuman
Delivered by the Women’s Engineering Society, International Women in Engineering Day (INWED), is an international awareness campaign to celebrate the achievements and work of female engineers. Taking place on Wednesday 23rd June, INWED focuses on the...

 Part of Solid Solutions Group

MENU
Top